
The Jordan Canonical Form

The Jordan canonical form describes the structure of an arbitrary
linear transformation on a finite-dimensional vector space over an al-
gebraically closed field. Here we develop it using only the most basic
concepts of linear algebra, with no reference to determinants or ideals of
polynomials.

THEOREM 1. Let β1, . . . , βn be linearly independent vectors in a
vector space. If they are in the span of α1, . . . , αk then k ≥ n.

Proof. We prove the following claim:

Let β1, . . . , βn be linearly independent vectors in a vector space. For
all j with 0 ≤ j ≤ n and all vectors α1, . . . , αk, if β1, . . . , βn are in the
span of β1, . . . , βj, α1, . . . , αk, then j + k ≥ n.

The proof of the claim is by induction on k. For k = 0, the claim is
obvious since β1, . . . , βn are linearly independent. Suppose the claim is
true for k−1, and suppose that β1, . . . , βn are in the span of the vectors
β1, . . . , βj , α1, . . . , αk. Then in particular we have

βj+1 = b1β1 + · · ·+ bjβj + a1α1 + · · ·+ akαk. (1)

For some i we must have ai 6= 0 since β1, . . . , βn are linearly independent,
so we can solve (1) for αi as a linear combination of

β1, . . . , βj , βj+1, α1, . . . , αi−1, αi+1, . . . , αk. (2)

Hence the vectors (2) span β1, . . . , βn. By the induction hypothesis,
(j + 1) + (k − 1) ≥ n, so j + k ≥ n. This proves the claim. The case
j = 0 of the claim gives the theorem. �

By this theorem, any two bases of a finite-dimensional vector space
have the same number of elements, the dimension of the vector space.

Let T be a linear transformation on the finite-dimensional vector
space V over the field F . An annihilating polynomial for T is a non-zero
polynomial p such that p(T ) = 0.

THEOREM 2. Let T be a linear transformation on the finite-dimen-
sional vector space V . Then there exists an annihilating polynomial
for T .
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Proof. Let α1, . . . , αn be a basis for V . For each i with 1 ≤ i ≤ n,
by Theorem 1 there exist scalars a0, . . . , an, not all 0, such that

a0αi + a1Tαi + · · ·+ anT
nαi = 0.

That is, pi(T )αi = 0 where pi = a0 + a1x + · · · + anx
n. Let p be the

product of all the pi. Then p is an annihilating polynomial for T since
p(T )αi = 0 for each basis vector αi. �

We denote the null space of the linear transformation T by NT and
its range by RT .

THEOREM 3. Let T be a linear transformation on the finite dimen-
sional vector space V . Then NT and RT are linear subspaces of V
invariant under T , with

dimNT + dimRT = dimV. (3)

If NT ∩RT = {0} then

V = NT ⊕RT (4)

is a decomposition of V as a direct sum of subspaces invariant under T .

Proof. It is clear that NT and RT are linear subspaces of V invari-
ant under T . Let α1, . . . , αk be a basis for NT and extend it by the
vectors αk+1, . . . , αn to be a basis for V . Then

Tαk+1, . . . , Tαn

are a basis for RT : they span RT , and if ak+1Tαk+1 + · · ·+ anTαn = 0
then ak+1αk+1 + · · ·+ anαn ∈ NT , so all of the coefficients are 0. This
proves (3), from which (4) follows if NT ∩RT = {0}. �

THEOREM 4. Let T be a linear transformation on a non-zero finite-
dimensional vector V over an algebraically closed field F . Then T has
an eigenvector.

Proof. By Theorem 2 there exists an annihilating polynomial p
for T . Since F is algebraically closed, p is a non-zero scalar multiple of

(x− ck) · · · (x− c1)

for some scalars ck, . . . , c1. Let α be a non-zero vector and let i be the
least number such that

(T − ciI) · · · (T − c1I)α = 0.

If i = 1, then α is an eigenvector with the eigenvalue c1; otherwise,

β = (T − ci−1I) · · · (T − c1I)α

is an eigenvector with the eigenvalue ci. �
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THEOREM 5. Let T be a linear transformation on the finite-dimen-
sional vector space V with an eigenvalue c. Let

Vc = {α ∈ V : for some j, (T − cI)jα = 0 }. (5)

Then there exists r such that

Vc = N (T − cI)r (6)

and
V = N (T − cI)r ⊕R(T − cI)r (7)

is a decomposition of V as a direct sum of subspaces invariant under T .

Proof. If α ∈ Vc and c ∈ F , then cα ∈ Vc; if α1 ∈ Vc (so that
(T − cI)j1α1 = 0 for some j1) and α2 ∈ Vc (so that (T − cI)j2α2 = 0
for some j2), then α1 + α2 ∈ Vc (since (T − cI)j(α1 + α2) = 0 whenever
j ≥ j1, j2). Thus Vc is a linear subspace of V . It has a finite basis, since
V is finite dimensional, so there is an r such that (T − cI)rα = 0 for
each basis element α and consequently for all α in Vc. This proves (6).

I claim that Vc = N (T − cI)r and R(T − cI)r have intersection {0}.
Suppose that α is in both spaces. Then α = (T − cI)rβ for some β since
α is in R(T − cI)r. Since it is in N (T − cI)r,

(T − cI)rα = (T − cI)2rβ = 0,

so β ∈ Vc by the definition (5) of Vc. Hence (T − cI)rβ = 0 by (6), so
α = 0. This proves the claim.

By Theorem 3 we have (7). Each of the two spaces is invariant
under T − cI, and under cI, so also under T = (T − cI) + cI. �

THEOREM 6. Let T be a linear transformation on the finite-dimen-
sional vector space V over the algebraically closed field F , and let the
scalars c1, . . . , ck be the distinct eigenvalues of T . Then there exist
numbers ri, for 1 ≤ i ≤ k, such that

V = N (T − c1I)r1 ⊕ · · · ⊕ N (T − ckI)rk (8)

is a direct sum decomposition of V into subspaces invariant under T .

Proof. From Theorem 5 by induction on the number of distinct
eigenvalues. �

A linear transformation N is nilpotent of degree r in case Nr = 0
but Nr−1 6= 0; it is nilpotent in case it is nilpotent of degree r for some r.
Notice that on each of the subspaces of the direct sum decomposition (8),
the operator T is a scalar multiple of I plus a nilpotent operator. Thus
our remaining task is to find the structure of a nilpotent operator.
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THEOREM 7. Let N be nilpotent of degree r on the vector space V .
Then we have strict inclusions

NN ⊂ NN2 ⊂ · · · ⊂ NNr−1 ⊂ NNr = V. (9)

Proof. The inclusions are obvious. They are strict inclusions be-
cause by definition there is a vector α in V such that Nrα = 0 but
Nr−1α 6= 0. Then Nr−iα is in NN i but not NN i−1. �

We say that the vectors β1, . . . , βk are linearly independent of the
linear subspace W in case b1β1 + · · · + bkβk is in W only if b1 = · · · =
bk = 0.

THEOREM 8. Let N be a nilpotent linear transformation of degree r
on the finite-dimensional vector space V . Then there exist a number m
and vectors α1, . . . , αm such that the non-zero vectors of the form N jαl,
for j ≥ 0 and 1 ≤ l ≤ m, are a basis for V . Any vectors linearly
independent of NNr−1 can be included among the α1, . . . , αm.

For 1 ≤ l ≤ m, let Vl be the subspace with basis αl, . . . , Nsl−1αl,
where sl is the least number such that Nslαl = 0. Then

V = V1 ⊕ · · · ⊕ Vm (10)

is a direct sum decomposition of V into sl-dimensional subspaces invari-
ant under N , and N is nilpotent of degree sl on Vl. For 1 ≤ i ≤ r, let
ϕ(i) be the number of subspaces in the decomposition (10) of dimension
at least i. Then

dimNN i − dimNN i−1 = ϕ(i),

so the number of subspaces in (10) of any given dimension is determined
uniquely by N .

Proof. We prove the statements of the first paragraph by induction
on r. For r = 1, we have N = 0 and the result is trivial. Suppose that
the result holds for r− 1, and consider a nilpotent linear transformation
of degree r.

Given vectors linearly independent of NNr−1, extend them to a
maximal such set β1, . . . , βk (so that they together with any basis for
NNr−1 are a basis for V ). Then the vectors Nβ1, . . . , Nβk are in
NNr−1 and are linearly independent of NNr−2, for if b1Nβ1 + · · · +
bkNβk ∈ NNr−2 then b1β1 + · · ·+ bkβk ∈ NNr−1 so b1 = · · · = bk = 0.
Now N restricted to NNr−1 is nilpotent of degree r − 1, so by the
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induction hypothesis there are vectors α1, . . . , αm, including Nβ1, . . . ,
Nβk among them, such that the non-zero vectors of the form N jαl are
a basis for NNr−1. Adjoin the vectors β1, . . . , βk to them; then this is
a basis for V of the desired form.

Now the statements of the second paragraph follow directly. (See
the following example, in which N is nilpotent of degree 5 on a 24 di-
mensional space. The bottom i rows are NN i.) �

V1 V2 V3 V4 V5 V6

α1 α2

Nα1 Nα2 α3 α4 α5

N2α1 N2α2 Nα3 Nα4 Nα5

N3α1 N3α2 N2α3 N2α4 N2α5 α6

N4α1 N4α2 N3α3 N3α4 N3α5 Nα6

We have done all the work necessary to establish the Jordan canon-
ical form; it remains only to put the pieces together. It is convenient to
express the result in matrix language.

Let B(r; c) be the r × r lower triangular matrix with c along the
diagonal, 1 everywhere immediately below the diagonal, and 0 every-
where else. Such a matrix is called a Jordan block. Notice that in the
decomposition (10), the matrix of N on Vl, with respect to the basis
described in Theorem 8, is the Jordan block B(sl; 0). (With the basis in
reverse order, the entries 1 are immediately above the diagonal. Either
convention is acceptable.) A matrix that is a direct sum of Jordan blocks
is in Jordan form.

THEOREM 9. Let T be a linear transformation on the finite-dimen-
sional vector space V over the algebraically closed field F . Then there
exists a basis of V such that the matrix of T is in Jordan form. This
matrix is unique except for the order of the Jordan blocks.

Proof. By Theorems 6 and 8. �

The proof shows that the same result holds for a field that is not
algebraically closed provided that T has some annihilating polynomial
that factors into first degree factors.

http://math.princeton.edu/∼nelson/217/jordan.pdf
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