The Jordan Canonical Form

The Jordan canonical form describes the structure of an arbitrary
linear transformation on a finite-dimensional vector space over an al-
gebraically closed field. Here we develop it using only the most basic
concepts of linear algebra, with no reference to determinants or ideals of
polynomials.

THEOREM 1. Let (31, ..., (8. be linearly independent vectors in a
vector space. If they are in the span of aq, ..., ai then k> n.

Proof. We prove the following claim:

Let 31, ..., Bn be linearly independent vectors in a vector space. For
all 7 with 0 < 7 < n and all vectors ay, ..., ag, if 81, ..., B, are in the
span of B1, ..., Bj, o, ..., ai, then 7 +k > n.
The proof of the claim is by induction on k. For k = 0, the claim is
obvious since (31, ..., 3, are linearly independent. Suppose the claim is
true for k— 1, and suppose that (1, ..., (3, are in the span of the vectors
Bi, ..., Bj, a1, ..., a. Then in particular we have

ﬁj—l—l =b1ﬁ1+"'+bjﬁj+a1041+"'—|—ak0ék. (1)
For some ¢ we must have a; # 0 since (1, ..., 3, are linearly independent,

so we can solve (1) for o; as a linear combination of

Bis -y Biy Bjg1, @1y ooy Qli1, Qg1 -y Qe (2)
Hence the vectors (2) span (1, ..., 0,. By the induction hypothesis,
(j+1)+(k—1) > n,so j+ k > n. This proves the claim. The case
j = 0 of the claim gives the theorem. O

By this theorem, any two bases of a finite-dimensional vector space
have the same number of elements, the dimension of the vector space.

Let T be a linear transformation on the finite-dimensional vector
space V over the field F'. An annihilating polynomial for T' is a non-zero
polynomial p such that p(T") = 0.

THEOREM 2. Let T be a linear transformation on the finite-dimen-

sional vector space V. Then there exists an annihilating polynomial
forT.



Proof. Let aq, ..., a, be a basis for V. For each i with 1 <17 < n,
by Theorem 1 there exist scalars ag, ..., a,, not all 0, such that

ape; + a1 Toy; + -+ a,T"a; = 0.

That is, p;(T)a; = 0 where p; = ag + a1z + -+ + a,x™. Let p be the
product of all the p;. Then p is an annihilating polynomial for 7" since
p(T)a; = 0 for each basis vector a;. O

We denote the null space of the linear transformation 7' by N'T and
its range by RT.

THEOREM 3. Let T be a linear transformation on the finite dimen-
sional vector space V.. Then NT and RT are linear subspaces of V
invariant under T', with

dim NT + dim RT = dim V. (3)

If NT NRT = {0} then
V=NT&RT (4)
is a decomposition of V as a direct sum of subspaces invariant under T'.

Proof. 1t is clear that N'T and RT are linear subspaces of V invari-

ant under 7. Let «q, ..., o be a basis for NT and extend it by the
vectors a1, ..., i, to be a basis for V. Then
Toagyr, ...y To,

are a basis for RT": they span RT, and if axs1Tak+1 + -+ a,Ta, =0
then agriagi1 + -+ + apa, € NT, so all of the coefficients are 0. This
proves (3), from which (4) follows if NT N RT = {0}. O

THEOREM 4. Let T be a linear transformation on a non-zero finite-
dimensional vector V' over an algebraically closed field F. Then T has
an etgenvector.

Proof. By Theorem 2 there exists an annihilating polynomial p
for T'. Since F' is algebraically closed, p is a non-zero scalar multiple of

(x—cg) - (x—0c1)

for some scalars cg, ..., ¢;. Let a be a non-zero vector and let i be the
least number such that

(T—CZI)(T—61I>C¥ =0.
If i =1, then « is an eigenvector with the eigenvalue c¢;; otherwise,
ﬁ == (T - Ci_lf) s (T — cJ)a

is an eigenvector with the eigenvalue c;. 0
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THEOREM 5. Let T be a linear transformation on the finite-dimen-
sional vector space V' with an eigenvalue c. Let

V.={aeV: for somej, (T —cl)ia=0}. (5)
Then there exists r such that
Vo= N(T —cl)" (6)

and

V=N(T-cl)"®@R(T —cl)" (7)
s a decomposition of V as a direct sum of subspaces invariant under T'.

Proof. If a € V. and ¢ € F, then ca € V_; if a1 € V. (so that
(T — cI)*a; = 0 for some j1) and ag € V. (so that (T — cl)2ay = 0
for some ja), then o + a € V, (since (T — ¢l )’ (a; + ) = 0 whenever
Jj > j1,72). Thus V, is a linear subspace of V. It has a finite basis, since
V is finite dimensional, so there is an r such that (T' — ¢I)"a = 0 for
each basis element a and consequently for all o in V... This proves (6).

I claim that V. = N (T —¢I)" and R(T — ¢I)" have intersection {0}.
Suppose that « is in both spaces. Then o = (T — ¢I)" 3 for some 3 since
ais in R(T — ¢I)". Since it is in N'(T — ¢I)",

(T —cl)"'a= (T —cl)*B=0,

so B € V. by the definition (5) of V.. Hence (T — ¢I)"3 = 0 by (6), so
a = 0. This proves the claim.

By Theorem 3 we have (7). Each of the two spaces is invariant
under T' — ¢I, and under ¢I, so also under T'= (T — cI) + ¢l. O

THEOREM 6. Let T be a linear transformation on the finite-dimen-
sional vector space V' over the algebraically closed field F', and let the

scalars c1, ..., cp be the distinct eigenvalues of T'. Then there exist
numbers r;, for 1 <i <k, such that
V=NT-ca)"® - dN(T —cI)™* (8)

1 a direct sum decomposition of V into subspaces invariant under T .

Proof. From Theorem 5 by induction on the number of distinct
eigenvalues. 0

A linear transformation N is nilpotent of degree r in case N" =
but N"~1 £ 0; it is nilpotent in case it is nilpotent of degree r for some 7.
Notice that on each of the subspaces of the direct sum decomposition (8),
the operator T is a scalar multiple of I plus a nilpotent operator. Thus
our remaining task is to find the structure of a nilpotent operator.
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THEOREM 7. Let N be nilpotent of degree r on the vector space V.
Then we have strict inclusions

NNCNN?>C---CNN'CNN =V. (9)

Proof. The inclusions are obvious. They are strict inclusions be-
cause by definition there is a vector « in V such that N"a = 0 but
Nt # 0. Then N""‘a is in N'N* but not N N*~ 1, O

We say that the vectors 3, ..., Or are linearly independent of the

linear subspace W in case b131 + -+ + bg Bk is in W only if by = --- =
b = 0.

THEOREM 8. Let N be a nilpotent linear transformation of degree r
on the finite-dimensional vector space V. Then there exist a number m
and vectors aq, . .., ay, such that the non-zero vectors of the form N7y,
for 7> 0 and 1 <1 < m, are a basis for V. Any vectors linearly
independent of NN can be included among the a1, ..., ap,.

For 1 <1< m, let V; be the subspace with basis oy, ..., N lay,
where s; is the least number such that N° oy = 0. Then

V=& oV, (10)

s a direct sum decomposition of V' into s;-dimensional subspaces invari-
ant under N, and N is nilpotent of degree s; on V. For 1 < i <r, let
(1) be the number of subspaces in the decomposition (10) of dimension
at least i. Then

dim N N* — dim NN = (i),

so the number of subspaces in (10) of any given dimension is determined
uniquely by N.

Proof. We prove the statements of the first paragraph by induction
on r. For r =1, we have N = 0 and the result is trivial. Suppose that
the result holds for » — 1, and consider a nilpotent linear transformation
of degree 7.

Given vectors linearly independent of N'N"~!, extend them to a
maximal such set (i, ..., B; (so that they together with any basis for
NN"1 are a basis for V). Then the vectors NGy, ..., NB are in
NN™! and are linearly independent of N'N"~2, for if by NGB + --- +
b NB, € NN™ 2 then b1 + -+ by, e NN" L sob; =---=b, =0.
Now N restricted to N'N"~! is nilpotent of degree » — 1, so by the
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induction hypothesis there are vectors aq, ..., a,,, including NGy, ...,
N3, among them, such that the non-zero vectors of the form N7q; are
a basis for NN"~!. Adjoin the vectors 31, ..., 3% to them; then this is
a basis for V' of the desired form.

Now the statements of the second paragraph follow directly. (See
the following example, in which N is nilpotent of degree 5 on a 24 di-
mensional space. The bottom i rows are N'N°.) UJ

Vi Vs Vs Vi Vs Ve

a1 (5]
Nay  Nas a3 oy Qs
pJ2a1 fJQQQ ﬁJ&g PJa4 PJa5
IV3a1 fV3a2 fv2&3 PV2a4 PJ2a5 (677

ﬁJ4a1 PJ4a2 PJ3a3 fV3a4 IV3a5 fJ@G

We have done all the work necessary to establish the Jordan canon-
ical form; it remains only to put the pieces together. It is convenient to
express the result in matrix language.

Let B(r;c) be the r x r lower triangular matrix with ¢ along the
diagonal, 1 everywhere immediately below the diagonal, and 0 every-
where else. Such a matrix is called a Jordan block. Notice that in the
decomposition (10), the matrix of N on V;, with respect to the basis
described in Theorem 8, is the Jordan block B(s;;0). (With the basis in
reverse order, the entries 1 are immediately above the diagonal. Either
convention is acceptable.) A matrix that is a direct sum of Jordan blocks
is in Jordan form.

THEOREM 9. Let T be a linear transformation on the finite-dimen-
stonal vector space V over the algebraically closed field F'. Then there
exists a basis of V' such that the matriz of T is in Jordan form. This
matrix is unique except for the order of the Jordan blocks.

Proof. By Theorems 6 and 8. U

The proof shows that the same result holds for a field that is not
algebraically closed provided that 7' has some annihilating polynomial
that factors into first degree factors.

http://math.princeton.edu/~nelson/217/jordan.pdf



